Unité de puissance 2014 - Comment marche le turbo

Comment le V6 Turbo et l’ERS fonctionnent de concertEn 2014, la quantité d’essence embarquée est limitée à 100 kilos et le débit d’alimentation en carburant à 100 kg/h

Comment le V6 Turbo et l’ERS fonctionnent de concert

En 2014, la quantité d’essence embarquée est limitée à 100 kilos et le débit d’alimentation en carburant à 100 kg/h. Si la nature du circuit et les conditions de course permettent au pilote d’utiliser la pleine puissance du moteur pendant plus d’une heure, il n’y aura donc pas assez de carburant pour rallier l’arrivée.

C’est ici que l’énergie électrique entre en jeu. Les F1 de 2014 roulent certes avec du carburant classique, mais également avec de l’électricité. Il devient alors primordial de trouver le bon équilibre entre les deux sources d’énergie pour optimiser la vitesse et réduire les temps au tour.

Un tour de circuit traditionnel

Lors d’une phase d’accélération (par exemple dans la ligne droite des stands) le moteur à combustion interne puise dans la réserve de carburant et le turbocompresseur tourne à la vitesse maximale de 100 000tr/min. Le MGU-H fonctionne alors en mode générateur et récupère une partie de l’énergie fournie par les gaz d’échappements à la turbine. Cette énergie est transmise au MGU-K (ou à la batterie si cette dernière a besoin d’être rechargée). Le MGU-K convertit à son tour cette puissance électrique en puissance mécanique qui, combinée à celle du moteur thermique auquel il est accouplé, permet de hausser le rythme ou d’économiser du carburant selon la stratégie choisie par le pilote.

Au bout de la ligne droite, le pilote lève le pied et freine pour prendre le premier virage. A cet instant, le MGU-K fonctionne comme un générateur : il récupère l’énergie dissipée au freinage et la stocke dans la batterie.



Durant la phase de freinage, la vitesse du turbocompresseur chute du fait de l’absence d’énergie à l’échappement, ce qui, dans le cas d’un moteur traditionnel, cause le principal désagrément du moteur turbocompressé : le temps de réponse. Ce phénomène intervient lorsque le pilote ré-accélère, la combustion du carburant dans les chambres de combustion relance la production de gaz chauds à l’échappement qui fournissent l’énergie pour relancer le turbo, mais celui-ci a besoin d’un certain temps avant de retrouver sa vitesse de rotation maximale permettant au moteur de délivrer toute sa puissance. Ainsi, pour éviter ce décalage en sortie de virage, le MGU-H agit ponctuellement comme un moteur qui relance instantanément le turbo à sa vitesse de rotation optimale et offre au pilote une réponse immédiate lorsqu’il sollicite l’accélérateur. L’équilibre entre la consommation de carburant, la récupération d’énergie et sa réutilisation sera étroitement surveillé tout au long du tour. “Cette saison, il va falloir gérer intelligemment l’utilisation des deux sources d’énergie disponibles pour en extraire le plein potentiel”, explique Naoki Tokunaga, le Directeur technique en charge des nouveaux propulseurs. “La gestion de l’énergie électrique sera tout aussi cruciale que celle du carburant. En théorie, le système de gestion de l’énergie décide quand consommer du carburant et quelle quantité en prélever dans le réservoir. De la même façon, il choisit à quel moment utiliser l’énergie électrique et la stocker dans la batterie”. Signer le meilleur temps au tour possible en fonction d’un niveau d’énergie donné reste l’objectif majeur.“ Bien sûr, si vous consommez moins d’énergie, vous irez moins vite. Nous acceptons cela. En revanche, nous ne voulons pas être pénalisés plus que la physique ne nous l’impose”. Dans le ratio énergie consommée/temps au tour, il existe une limite entre ce qui est physiquement possible et impossible. “Nous l’appelons la frontière du temps au tour idéal”.
Écrire un commentaire
Montrer les commentaires
A propos de cet article
Séries Formule 1
Type d'article Actualités